
Fermi National Accelerator Laboratory

FERMILAB-Pllb93/079

The Application of Object Oriented
Programming Methods to Event Delivery in

Experimental High Energy Physics

Shigeki Misawa

Physics Department, Uniuersity of California
Berkeley, California

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

March 1993

To be submitted to Computers in Physics

$ Operated by Universities Research Associakm Inc. under Contract No. DE-ACOZ-76CH03000 with the United States Deparbnent of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof.

The Application of Object Oriented
Programming Methods to Event Delivery in

Experiment al High Energy Physics

Shigeki Misawa
Physics Department, University of California, Berkeley, CA 94720

May 26,1993

Abstract

Object oriented programming is a relatively recent development in software
engineering that holds the promise of dramatically reducing the complexity of large
computer software systems. Event delivery, that part of experimental high energy
physics data analysis designed to convert ram experiment data to a format suitable
for analysis, is a large software system that might benefit from the application
of object oriented programming methods. This paper describes the results of
applying object oriented programming methods to the development of an event
delivery system for the E771 fixed target experiment at Fermilab. The paper
is targeted at high energy physics experimentalists who are interested in new
programming techniques but are unfamiliar with the concepts and vocabulary of
object oriented programming.

1

Contents

1 Introduction 4

2 caveats 4

3 An Overview of the Experiment and Analysis 5

4 Object-Oriented Programming 6

4.1 Object-Oriented Design . 6
4.2 Object-Oriented Programming Languages 7

5 Event Delivery
5.1 Hits .
5.2 Raw Hits. .
5.3 Planes .
5.4 Readouts . .
5.5 Events
5.6 Data sources .

5.6.1 Tape and Disk
5.6.2 Data Clients and Data Servers
5.6.3 Monte Carlo .

5.7 Convenience Classes
5.7.1 Readout Lists
5.7.2 Groups and Group lists .

6 Using the Event Delivery System

7 Conclusions

8 Acknowledgements

A Addresses and Pointers

B Casting

C Complete Spectrometer Decoding

References

.

.

9
9

11
13
16
19
20
20
21
21
22
22
22

23

24

26

27

29

30

34

2

List of Listings

1 Hit-ld class messages
2 RawHit-id class messages
3 MonteXarloHit class messages
4 Plane-id class messages
5 WirePlane-id class messages
6 Detectorld class messages
7 PlaneList-id class messages
8 Readout class messages
9 Event class messages
10 DataSource class messages
11 DataServer class messages
12 Mc_Event class messages
13 ReadoutList class messages
14 Group-id class messages
15 Group-IdList class messages

35
35
35
36
37
37
37
38
39
39
40
40
41
41
41

3

1 Introduction

Experimental high energy physics (HEP) analysis software is a large and complex soft-
ware system that is used to extract physics from data generated by an experiment. In
order to obtain correct results from this data, it is crucial that the software be correct.
Furthermore, to get results in a timely fashion, it is essential that t,he code be developed
quickly and that it process data as efficiently as possible. In the context of a typi-
cal experimental HEP collaboration, achieving these goals can be extremely difficult.
Therefore, it is vital that the best methods and language be used to develop the analysis
software.

Object-oriented programming (OOP), a relatively recent development in the field of
software engineering, is a programming methodology that promises to simplify and speed
up the development of large software systems. This programming methodology consists
of two components. The first component is a method of system design that is different
from the traditional methods of structured design and algorithmic decomposition. The
second component is the implementation of the resulting design in a computer language
that supports the object-oriented programming paradigm (programming model).

In this paper, some of the concepts in OOP are introduced through their application
to the design and implementation of the event delivery part of a HEP data analysis
system. Event delivery is the “front end” of the analysis system and is responsible for
converting raw data from the experiment to a format that is amenable to analysis. The
goal of the design was to create an easy to use system from which different analysis
programs could be rapidly constructed. The object-oriented (00) event delivery system
was one product of a project to develop a complete 00 “drop in” replacement for the
official analysis software for the E771 fixed target experiment at the Fermi N&anal
Accelerator Laboratory (Fermilab or FNAL). The official analysis software is current,ly
being developed in FORTRAN using standard algorithmic decomposition methods.

This paper is directly targeted at high energy physics experimentalists who are inter-
ested in alternatives to FORTRAN and algorithmic decomposition design methods. No
knowledge of OOP is required to understand the contents of this paper. However, famil-
iarity with experimental high energy physics data analysis and apparatus is definitely
required.

2 Caveats

Several points should be noted before getting into a detailed discussion of the applica-
tion of OOP methods to event delivery. First, the application of OOP methods was
made from “top down”. However, no attempt was made to “push” the OOP paradigm
to the smallest details of the system. OOP purists could rightfully argue that the sys-
tem is, at best, a hybrid design exhibiting only some of the characteristics of a “t,rue”
00 implementation. Second, significant time pressures present during the development

4

of the system impeded attempts to design a system that exhibits one of the desirable
characteristics of an OOP system: reusability. The primary goal in the implementation
was to get the system working. Third, many features required by “production” event
delivery systems may not be present in the system. Finally, the event delivery system
is implemented in the C++ programming language [l], a language that extends the C
programming language [Z] to support object-oriented programming. It is one of sev-
eral object-oriented programming languages, e.g., SmalltalkBO, Eiffel, that support the
object-oriented paradigm [3, 4, 51. Each language supports a slightly different vision of
object-oriented programming. Hence, the design of the event delivery system will be
influenced by the fact that it is implemented in C++.

3 An Overview of the Experiment and Analysis

Before getting into a discussion of object-oriented programming and the event, delivery
system, a quick overview of the E771 experiment and the data analysis problem is war-
ranted. The E771 experiment is a fixed target experiment at Fermilab which looks at the
interactions of high energy protons with a stationary or “fixed” target. The secondary
particles, resulting from an interaction of a proton with the target, are detected with
a spectrometer consisting of a series of detector planes. These detector planes come in
a variety of types. They include silicon micro-strip detectors, multi-wire proportional
(MWPC) chambers, drift chambers, pad chambers [6], scintillators, and muon detectors.
An analysis magnet, also present in the spectrometer, provides momentum information
about the secondary particles [7, 81.

The detectors in the spectrometer are grouped by the readout electronics to which
they are attached. Since the identity of these groups is import,ant in the discussion of
the event delivery system, they are mentioned here. The Silicon d&ctor group consist,s
of silicon micro-strip detectors. The PCB and PC detector groups consist of multi-wire
proportional chambers. The Drift and CC W’ Ire detector groups are composed of drift
chambers. The Pad detector group consists of pad chambers. The RPC and MUON
detector groups are composed of muon detectors. (The scintillators are not dealt with
in this event delivery system and will not be discussed.)

The data analysis problem for the experiment can be separated into three categories:
detector characterization, analysis code characterization, and physics analysis. Detector
characterization utilizes experiment data to obtain information about the detectors in
the spectrometer. This includes such information as detector efficiency and alignment.
Analysis code characterization utilizes data, from both the experiment and from a Monte
Carlo simulation of the spectrometer and the interaction physics, to understand and
verify the performance of the programs used in physics analysis. This includes such
aspects as determining the efficiency of track finding and understanding the effects of
various “cuts” used in the track finding process. The final component of data analysis
is physics analysis. In physics analysis, data from the experiment is used to determine

5

particle decay rates, particle production cross sections, and other physical quantit,ies.
A task that is common to all three components of data analysis is the con&u&on

of particle trajectories, for a given event, from the data obtained from the spectrometer
(or a simulation of the spectrometer and the interaction physics). These trajectories
(or tracks) are constructed from the hits registered by the individual detectors in the
spectrometer. These hits, however, must first be extracted from the data for each event.
For bandwidth and data storage reasons, the event data is stored in a compressed or
packed format. Since the packed data is not directly usable, an event delivery system is
required to convert the data to a format that is suitable for analysis.

4 Object-Oriented Programming

The creation of an object-oriented software system is a two step process. The first step
is to use object-oriented design (OOD) methods to design the system. The second step is
to implement the design in an object-oriented programming language (OOPL). But what
is OOD and what makes an OOPL different from a traditional programming language?
A detailed answer to these two questions is beyond the scope of this paper. However,
a quick overview of OOD and OOPLs will suffice for the purposes of describing the
application of OOP methods to the development of the event delivery system.

4.1 Object-Oriented Design

In designing a complex system of any type, software or other, the rule has always been
to divide and conquer. A complex system is recursively partitioned into smaller and
simpler components. It is hoped that the components that result from this decomposition
will be simple enough to implement. Traditional software design methodologies, like
algorithmic decomposition and structured design, partition software systems by function
OI algorithm [9]. A typical program resulting from these design methods consists of
a series of nested functions. In contrast, OOD recursively partitions a system into
“software objects”. Each software object provides a well defined set of services, with
different objects providing different services. The process is similar to the hardware
system design of a computer workstation. A workstation can be partitioned into a
monitor, keyboard, and processor box. The monitor displays information obtained from
the processor box. The keyboard sends inputs from the user to the processor box.
The processor box responds to these inputs by changing its internal state and sending
information to the monitor. The processor box can be partitioned into a motherboard,
peripheral cards, mass storage subsystems, power supply, etc. The complete workstation
consists of a collection of interacting components. Similarly, an object-oriented software
system consists of a collection of interacting software objects.

The key to object-oriented design is the creation of a physical and/or conceptual
model of the system to be built. This model is then partitioned into physical and/or

6

conceptual subsystems from which software objects are derived. In the case of the
event delivery system, a combined physical/ conceptual model was used as a basis for
the design. The physical model was the E771 spectrometer and its data acquisition
hardware. Some of the physical subsystems, from which software objects were derived,
are detector planes, readout systems, and tape drives. Among the conceptual additions
to this physical model are the notions of an event and a hit.

This association of physical and conceptual objects with software objects is one of the
ways in which OOD simplifies software systems. The physical/conceptual model used in
designing the system is typically something that is already familiar to the programmer.
In this case, the HEP experiment&t is familar with the spectrometer. In contrast, the
subroutines in a traditionally designed event delivery system do not map as well, if at
ail, to anything that is already familiar to the HEP experiment&t.

Software objects are derived from physical and conceptual objects, but what does
this really mean? Software objects are software representations or manifestations of
physical and conceptual objects. They are designed to possess the same “behavior” as
the physical and conceptual objects they represent. For example, a software detector
plane object should be “filled” with “hits”. It should “know” how many hits were
detected on the detector plane it represents. It should also “know” about its physical
shape and position. Each “hit”, represented by a software hit object, should “know”
what detector plane it is “in” and its position in that plane.

The behavior of a software object is manifest in its ability to respond to “messages”.
By “sending” messages to a software object, it is possible to get a software object to
answer questions, to store information, to process information, and to complete tasks.
(In C++ terminology, the process of sending a message to an object is referred to as
“invoking a member funct,ion for an object”.)

Finally, it is clear that different physical/ conceptual objects possess different behav-
iors OI characteristics. Similarly, different software objects “understand” different sets
of messages. For this reason, software objects are placed into different “classes”. The
class of an object determines the complete set of message understood by that object.

4.2 Object-Oriented Programming Languages

Object-oriented design outlines a means of partitioning and organizing a software sys-
tem. Nothing prevents a system designed with OOD techniques from being implemented
in a standard programming language. In fact, many 00 software systems have been
implemented with traditional programming languages, e.g., PenPoint [IO], Xt Intrin-
sits [ll]. However, the full benefits of OOD are not realized when this is done. As an
analogy, consider a system designed using dynamic memory allocation and user defined
data structures and implemented in a language that does not support these features.
Both features can be simulated: user defined data structures with groups of arrays ac-
cessed with a common index and dynamic memory allocation with pre-allocated arrays
and memory management routines. However, these ersatz constructs are not as “cleann

7

as the real construct and do not provide the complete benefits of the real constructs.
The resulting system will not be as easy to read, modify, or maintain as a system im-
plemented in a language that supports these features.

Intrinsic support for classes and objects is one of the features that distinguish an
OOPL from a conventional language. In an OOPL, 1 c asses are extensions of types (e.g.,
INTEGER , CHAR , REAL) found in standard languages. Similarly, objects are simply
variables of these “extended” types. In fact, in some OOPLs, no distinction is made
between types and classes and between variables and objects. How classes are like types
and objects are like variables is best illustrated through an example.

In FORTRAN, a variable can be declared to be of type REAL. The type of the variable
defines how much memory is allocated for the variable, in this case enough to store a
floating point number. Similarly, a class defines the amount of memory that is allocated
for an object (of that class). More correctly stated, a class defines the types and numbers
of state variables possessed by an object of that class. For example, a “hit” object needs
to store position and measurement uncertainty information for a hit. The “hit” class
would specify that an object of the hit class would possess (or consist of) two floating
point variables. One variable would hold the position information and the other would
hold the measurement uncertainty information. For this reason, a class is similar to a
user defined type and an object is similar to a variable of that user defined type.

The similarity between types and classes can be extended to their “behavior”. The
type of a variable defines what operations can be performed on a variable just as the
class of an object defines what messages can be sent to an object. For example, a REAL
variable can be truncated and negated (i.e., have its sign changed). In a pure OOPL,
a REAL variable would be replaced by an object of the class REAL. Among the messages
that would be defined for the class are negate and truncate. The process of negating a
number would be accomplished by sending the object the negate message. In the case
of the hit class, messages accessing information about the hit would be defined by the
class.

The value of thinking of classes as extended types and objects as variables should
not be underestimated. An object of a class can be passed to any function that takes an
object of that class as a parameter in the same way that a REAL variable can be passed
to any function that takes a REAL variable as a parameter. Multiple objects of a class
can be created in the same way that multiple REAL variables can be created. Different
messages are understood by objects of different classes in the same way that different
operations can be performed on variables of different types. For example, consider the
different operations that can be applied to REAL variables and CHARACTER variables in
FORTRAN.

At this point, the basic 00 design methodology and the OOP ideas of class and
object have been introduced. This is sufficient information to start a discussion of
the event delivery system. It should be noted that the important OOP (and OOPL)
concepts of class hierarchy, inheritance and derivation, polymorphism, dynamic binding,
encapsulation, and data abstraction have not been discussed. However, these concepts

8

are best explained in the context of their use in the event delivery system.

5 Event Delivery

Before getting into a discussion of the event delivery system, it should be pointed out
that the discussion is tailored to users of event delivery systems, i.e., data analysis
programmers. Little if any of the discussion will involve details of the implementation of
the system (those aspects that are of interest to the designer and implementer of event
delivery systems).

5.1 Hits

The simplest object of interest to the data analysis programmer is the hit. Physically,
it is the interaction point between a detector plane and a part,icle. Conceptually, it is
information about this interaction point, e.g., the position of the hit in the plane, the
uncertainty in the measurement of its position, etc. Physical hits generated by the Ei’il
spectrometer fall into two distinct conceptual categories which will be called 1D and
2D hits. 1D hits are generated by the MWPCs, drift chambers, and silicon micro-strip
detectors. Physical hits in these detectors can be localized to a finite width line within the
detector plane. That is, the position of a particle can be determined along only one axis
that is transverse to the beam axis. The width of the line is determined by measurement
uncertainty. Hits of the 2D variety are generated by the pad chambers, scintillators, and
muon detectors. These detectors can localize a physical hit to a rectangular region in
the detector plane, i.e., they provide position information along two orthogonal axes
that are transverse to the beam axis. The size of the rectangular region is determined
by the resolution of the detector.

The 1D and 2D hits are represented in the event delivery system, respectively, by
objects of the Hit-id and Hit2d classes. Since these two classes differ in only “minor”
details, only the Hit-ld class will be discussed. (This extends to the discussion in the
rest of this paper. The Hit-Id class is one class in a set of classes to be discussed that
work exclusively with 1D detector information. These other “1D” classes all have “2D”
counterparts that are not mentioned in the paper.)

Since an object of the Hit-Id class is the software representation of a physical hit,,
it should provide information about the hit. This information is obtained by sending
messages to the object. The messages understood by a Hit-id object are shown in
Listing 1. (Actually, this should be ‘an object of the Hit-id class”, but it is much easier
to say “a Hit-Id object”.) Th e f ormat of the message declaration used in the listing is:

<return type> <message name> (<argument list>)
/* optional comment describing the message */

9

The word void in the argument list means that the message takes no arguments. Simi-
larly, void as a return type indicates that the message returns no value.

Of the messages defined by the class, two are particularly important: rawhit 0 and
plane(). Respectively, they return the address of the RawHit-id object from which
the hit was derived and the address of the Plane-id object containing the hit. (See
appendix A for a discussion of addresses.) These classes will be discussed later.

Now that the messages recognized by Hit-Id objects have been introduced, the fol-
lowing question arises, how is a message sent to an object? The following code fragment
shows how the x-pos() message is sent to a Hit-Id object.

double x-coord;

x-coord = hit-object .xpos();

The first line defines x-coord to be a double precision variable. The { } contains
the code that creates the Hit-id object, hit-object. (The exact procedure for creating
a Hit-id object is left out because the end user never creates a Hit-id object. All
the Hit-id objects are created by objects of classes to be discussed later. The process
of creating objects will be outlined at that time.) The second line sends the x-pos()
message to hit-object and stores the returned value in x-coord.

There are two important points to note about the Hit-id class. First, the end user is
completely ignorant of the implementation of the Hit..ld class. Given a Hit-id object,
it is not possible to determine how the information returned by the x-pos() message
is stored within the object. The message interface hides the implementation details
of the class. This is an example of the important concept of data abstraction. With
data abstraction, it is possible to alter the implementation of a class without affecting
any of the programs, written by the end user, that use the class. (This is assuming
that the message interface is unaltered, i.e., the “names” of the messages remain the
same.) Second, the message interface restricts the user’s ability to access and alter
information contained in a Hit-id object. This is an example of encapsulation. In the
case of the Hit-Id object, only the setflag message alters the “internal state” of the
object. This message sets an integer variable within the RawHit-Id object associated
with Hit-Id object to the value specified by the argument to the message. This variable
is provided for whatever use the end user desires. (One possible use is t,o tag hits
as “used”.) This ability to restrict access to information goes a long way in making
programs easier to understand and more immune to bugs.

For simple classes, the benefits of encapsulation and abstraction achieved with the
message interface may not be obvious. However, for more complex classes, the benefits
are more apparent. The greater degree of encapsulation and abstraction that is obtained
with messages is one of the advantages classes have over user defined dat,a structures
found in traditional programming languages.

10

5.2 Raw Hits

The Hit-id object provides information about a hit that is of the most use to the data
analysis programmer. However, some data analysis programs require hit information
that is more closely related to the information obtained from the data acquisition hard-
ware. This “rawn hit information takes the form of an integer identifying the individual
detector wire in the detector plane that registered the hit. (This is for hits from the
drift chambers and MWPCs. For hits from the silicon micro-strip detectors, the “wire”
number identifies the individual strip in the detector plane that registered the hit.) Raw
hit information for a hit is provided by the RawHit-Id object that is created for the hit.

Listing 2 shows the messages recognized by RawHit-Id objects. The montexarlo()
message is used to determine if a RawHit-id object represents a Monte Carlo generated
hit. This ability to distinguish Monte Carlo hits from “real” hits is necessary because
the testing of data analysis code sometimes involves overlaying a Monte Carlo generated
event “on top” of a “real” event. If a RawHit-id object represents a Monte Carlo
generated hit, additional information is available about the hit. This information is
obtained simply by sending the trackinfoo message to the object. This message
returns a Monte-CarloHit object which provides “tagging” information for the hit.
This tagging information is accessed with the messages defined by the Monte-CarloHit
class. (see Listing 3)

If raw hit information were restricted to just a wire number and Monte Carlo tagging
information, then every hit would be adequately represented by a RawHit-ld object.
However, 1D hits are not homogeneous. For example, addition information in the form
of drift distance data is available for each hit from a drift chamber. In the case of
silicon micro-strip detector hits, the status of an rf flag, set by the readout electronics,
is available for each hit. It would appear that RawHit-ld objects are inadequate for
representing hits from these two types of detectors.

A programmer familiar with a language that provides user defined data structures
would immediately suggest setting aside extra space in a RavHitJd object to hold this
additional information. There are two problems with this approach. First, it requires
the user to be cognizant of the interpretation of the additional information, which may
be different for different detectors. Second, if a new detector is installed that provides
more information about a raw hit than can be stored in the allocated space, changes
have to be made to the definition of the data structure.

In a language that does not support user defined data structures, raw hits would
typically be stored in a set of arrays. One array would store the wire number for the hits,
another would store the Monte Carlo track number for the hits, and another would store
the Monte Carlo vertex number for the hits. A common index would be used to access the
information for a particular hit from the different arrays. In such a system, the natural
method for handling the additional information provided by the silicon microstrip and
drift detectors is to assign additional arrays to hold this information. The problem with
this approach is that the connection between the original set of arrays and the new

11

arrays is only conceptual. (In addition, the counection betlveen the original arrays is
also only conceptual.)

The object-oriented method for handling the differences between the different raw
hits is to utilize the inheritance and polymorphism mechanisms present in OOPLs. In-
heritance is an OOP concept which deals with the relationship between similar classes.
Inheritance allows new classes to be built from pre-existing classes. Almost all the
functionality required for a drift chamber hit is provided by the RawHit-ld class. It
would be convenient to be able to create a class for drift chamber hits by taking the
implementation of the RawHit-ld class and adding the features that are needed. By
doing this, all the work involved in implementing and testing the functionality of the
RawHit-id class will not have to be repeated for the drift chamber hit class. In OOP,
this is achieved by “deriving” a new class, in this case the RawDriftHit class, from the
old class, in this case the RawHitJd class. The RawHit-ld class is called the base or
parent class of the RawDriftHit class. The derived class “inherits” all the behavior of
its parent class. A RawDriftHit object will therefore, recognize (i.e., respond to) the
same messages as an object of the RawHit-id class. However, it will also respond to any
new messages defined by the RawDriftHit class. This class defines the new message
drift_dist.a.nce() which returns drift distance information for the hit. In addition, it
defines what additional memory is to be allocated for a RavDriftHit object to hold
the drift distance information. Similarly, the Raw-SiliconHit class is derived from the
RawHit-id class. The RavSiliconHit class defines the rfflag() message, which
returns the status of the rf flag for a silicon detector hit, and the state variable required
to store the status of this flag. The relationship between these three classes constitut,es
a class (or inheritance) hierarchy.

At this point, a programmer familiar with only traditional programming languages
would point out that inheritance has provided a means of adapting a pre-existing class
to create new classes with additional functionality, only to create a new problem. In
the eyes of such a programmer, this “problem” is in the relationship between a Hit-id
object and a RawHit-Id object. The rawhit message defined by the Hit-ld class
returns the address of a RawHit-id object. It would appear that the existence of the
RawDriftHit and RawSiliconHit classes would require the existence of DriftHit
and SiliconHit classes, with each of these latter classes defining a rawhit () message,
respectively returning the address of a RawDriftHit object and a RawSiliconHit
object. However, the DriftHit and SiliconHit classes are not needed because OOPLs
support the OOP concept of polymorphism.

RawSiliconHit and RavDriftHit objects understand all the messages that a
RawHit-id object understands. Therefore, from a functional perspective, a function
that expects a RawHit-id object should not care whether it is passed a RawHit_id,
RawDriftHit, or RawSiliconHit object. (Stated in another way, an object of a
derived class cannot be distinguished from an object of the base class by sending the
object the messages defined by the base class.) Because of this, OOP languages allow
derived objects to be used wherever base class objects are allowed. This is polymorphism.

12

From the user’s perspective, this ability makes “sense”. For all intents and purposes, a
RawDriftHit object behaves “just like” a RawHit-Id and should therefore, be allowed
anywhere that a RawHit-Id is allowed.

In C++, polymorphism is manifest in the ability to use the address of an object of a
derived class anywhere that the address of an object of the base class (from which it uyas
derived) is expected. This means that a Hit-Id object can “legally” return the address of
a RawDriftHit object when it receives the raw-hit 0 message. Conversely, a function
that expects the address of a RawHit-id object as an argument can be passed the address
of a RawDriftHit object. One drawback with polymorphism in C++ is that the address
returned by the rawhit message is classified as the address of a RawHit-Id object.
Therefore, the drift-distance0 message cannot be sent to the object at the returned
address, even if it is a RawDriftHit object. However, this is not a fatal flaw. If the
returned address is “really” the address of a RawDriftHit. object, the address need
only be “cast” into an address of a RavDriftHit object. (More information about this
procedure is given in appendix B.) Once this cast is applied, the drift-distance0
message can be sent to the object located at the returned address. Currently, the “real”
class of the object, at the address returned by the raw&it 0 message, can only be
determined by knowing the detector type of the plane containing the hit, i.e., silicon
detector plane, drift chamber plane, etc. This information can be obtained from the
Planeld object returned by the plane0 message defined by the Hit-id class.

Several questions present themselves at this point. First, where do the Hit-ld objects
come from? Second, why create two distinct classes, RawHit-Id and Hit-id, to hold
hit information? Third, how are RawHit-Id and Monte-CarloHit objects placed into
their respective “container” objects. ,The answers to these questions will be given much
later in this paper. At this point it is more advantageous to discuss the classes that hold
the Hit-id objects for particular detector planes in the spectrometer.

5.3 Planes

A single Hit-id object is perfectly nice, but a typical fixed target system generates hun-
dreds of hits per event. The question that arises is, how will all these hits be managed?
A programmer proficient in a language without user definable data structures would im-
mediately suggest an array of Hit-Id objects. However, the question then arises, should
there be a single array containing all the hits OF should some other system be used?
Clearly, a logical grouping of hits would be by detector plane. This would suggest that
the logical data structure should be a two dimensional arrays of hits. Another possi-
bility is to have a single one dimensional array, with hits from the same detector plane
located in a contiguous section of the array. This leads to the next question, in what
order should the planes be stored? Finding a single ans\ver to this question is one of the
problems with using arrays to store hit information. Another is that the use of arrays
does not address the problem of storing other information that may be associated with
a detector plane, for example, the 2 position of the detector (i.e., the position of the

13

detector along the beam line), the type of detector (i.e., silicon d&&or, drift detector),
the number of hits in the detector plane, etc.

The 00 solution is to create a class, the Plane-Id class, to represent detector planes.
This fits in nicely with the physical spectrometer, which is built of detector planes from
which hits are extracted. In addition to providing information about a detector plane,
a Plane-Id object also serves as a repository for the hits detected on the plane. A
Plane-Id object behaves as if it contains an array of RawHit-id objects and an array
of Hit-Id objects. The messages defined by the Planeld class are shown in Listing 4.

A peculiarity in the above description of the Plane-ld class is the statement that a
Plane-id object behaves like it contains an array of RawHit-Id objects. This gets back
to the question about the presence of the RawHit-Id class. As was stated previously,
not all data analysis programs require the hit information that is provided by the Hit-Id
class. For these programs, the event delivery system allows hits to be decoded into only
RawHit-Id objects, thus reducing processing time. These RawHit-Id objects are stored
in the Plane-id objects and are made accessible in the same array-like manner as the
Hit-Id objects.

One final peculiarity is the presence of the num~it.s() and numzavhits() mes-
sages. One would expect that these numbers would be equal; however, this is not true
for three reasons. First, num_hits() will return zero if hits have only been decoded into
RawHit-Id objects. Second, a single raw drift chamber hit can map to two transverse
coordinates because of directional ambiguities in the drift distance information. Thus,
one RawDriftHit object can result in the creation of two Hit-Id objects. (Two Hit-Id
objects derived from the same RawHit-Id object will return t,he same RawHit-Id object

when sent the rawhit message.) Third, the current system allows hits on adjacent
wires or strips to be consolidated should there be a desire to do so. This consolidation
is made only with the Hit-id objects, not with the RawHit-Id objects.

As with the RawHit-Id class, the Plane-Id class serves as a base class for other
classes. The most important of these is the WirePlane-Id class. This derived class exists
because the Drift, PCB, PC, and CC Wire detectors provide additional informat,ion
about their respective geometries that the other 1D detectors do not. This information
is accessed with the messages shown in Listing 5.

Two OOP features, not previously encountered, are used by the two in-plane0
messages defined by the WirePlane-Id class. The first feature, function overloading,
allows two messages to have the same name. The message in..plane() has been “over-
loaded” with two definitions. The compiler is able to determine which definition to use
by the number and types (or classes) of the arguments passed to the message. The
in-plane0 messages were overloaded because they accomplish the same task, albeit
with different arguments. The second OOP feature used by both in-plane0 messages
is dynamic binding (which is unrelated to function overloading). In order to discuss dy-
namic binding, it is necessary to discuss the hierarchy of plane classes and the d&&or
planes they represent in slightly greater detail.

The Drift, PCB, PC, and CC Wire detector planes all contain dead regions around

14

the beam axis where particles cannot be detected. However, the shape of the dead
region varies from detector to detector. For example, it is either a circle or square for
the Drift detectors, it is a square for the PCB, and it is a rectangle for the CC Wire
detectors. In a standard programming language, these differences are typically handled
with a switch statement or a computed goto or some other multi-way branch that calls
different functions depending on the type of plane being examined. Each function would
determine if the point of interest was in the dead region for a different dead region shape.
The drawback with this method is that each addition of a new detector with a different
dead region shape would require the updating of this multi-way branch.

In an OOPL, dynamic binding, which is closely tied to inheritance, is the solution
to the problem. With inheritance, a derived class can redefine messages defined by its
parent class. For an object of a given class, the definition (of a redefined message)
that is executed is the definition that is appropriate for the class to which the object
belongs. The situation would seem to be less clear in the case of a pointer to an object.
(FORTRAN programmers should read appendix A before continuing. The word pointer,
in C++, has a definition that is different from its definition in FORTRAN.) Because of
polymorphism, a pointer to a base class may contain the address of an object of a class
derived from that base class. If a message that is defined by the base class and redefined
by the derived class is sent to the object at the address contained in the pointer, nhich
definition of the message gets executed? With dynamic binding, the answer is the version
that is correct for the object at the address, irrespective of the class of the pointer. An
object implicitly “knows” the class to which it belongs. Now that dynamic binding has
been explained, we are ready to apply it to the problem of the in-plane0 message.

With dynamic binding, the solution to the in-plane0 function is to give each detec-
tor plane type, i.e., Drift, PCB, PC, etc., its own class, derived from the WirePlane-Id
class. Each individual class redefines the in-plane0 message in a way that is appro-
priate for the shape of its dead region. (Note: This does not mean that every detector
plane needs its own separate class. Clearly, all planes with square dead regions could
be represented by the same class. The different square sizes could be handled by state
variables possessed by individual objects of the class. The same holds true for other
shapes.) With dynamic binding, any function that takes an address to a WirePlane-Id
object as an argument can also be passed the address of an object of a class derived from
the WireSlane-Id class. If the function sends the object (at the passed address) the
in-plane0 message, the definit,ion of the message that is correct for the passed object
is automatically to execute. The function is completely ignorant of the existence of any
derived classes and the fact that they have redefined the in-plane0 message.

In addition to hiding the diversity of dead region shapes, dynamic binding also elim-
inates the need to recode, as well as recompile, any function (that expects the address of
a Wireplane-Id object as an argument and sends that object the in-plane0 message)
should a detector with a different shaped dead region be added to the spectrometer. The
maintainer of the event delivery system need only derive a new class from WireJ’lane-Id
that redefines in-plane0 for the new dead region shape. Another benefit of dynamic

15

binding is that the information about the shape and size of the dead region has been
localized within the plane object, along with the other information about the plane. If
a standard multi-way branch had been used, this information would not have been as
well localized.

Now that the Plane-ld class has been introduced, it is possible to answer the ques-
tion: what created the hit and plane objects and placed the appropriate information in
them?

5.4 Readouts

In the E771 spectrometer, groups of detector planes are connected to readout systems
containing the data acquisition (DA) electronics. The DA electronics in each readout
system compress the information obtained from the attached detector planes and send
the data to a central event processor. This central event processor collects data from
all the readout systems and combines them into a logical bundle called an event. This
event is then written out to tape. This system, running in reverse, served as the phys-
ical/conceptual model for the remaining objects in the event delivery system. In this
model, event objects, holding data for single events, are retrieved from data source ob-
jects. The event objects are then passed to readout objects which decode the data into
hit objects and put them into plane objects.

The readout object must accomplish three tasks. First, it must create Plane-ld
objects (or in the case of readouts connected to 2D detectors, Plane2d objects) for
each detector plane connected to the physical readout system the object represents.
Second, it must fill each Plane-ld object with RawHit-id objects and Hit-ld objects
representing hits contained in the physical detector plane represented by the Plane-ld
object. Third, it must provide access to these Plane-id objects.

In the E771 system, the detectors connected to any particular readout system are
either all 1D or all 2D. No readout system contains a mixture of both detector types. This
prompted the development of the Detectorld and DetectorJd classes. The messages
defined by the Detectorld class are shown in Listing 6. This class provides access to
the planes connected to a particular readout through an object of the Plane-List-ld
class. The messages defined by this class are shown in Listing 7. A PlaneList-Id
object is designed to look like an array of Plane-id objects. One problem with the
PlaneList-ld class is that the ordering of Plane-id objects cannot be specified OI
altered by the end user. The Groupld and Group-ld_List. classes, to be introduced
later, solve this problem.

The Detectorld class defines how planes are bundled and accessed. However, a
Detectorld object does not create Pla.ne..ld objects nor does it fill them with hit data.
This is the responsibility of Readout objects. A Readout object “undoes” the work of
a readout (DA) system. That is, it takes an event, extracts the data for the readout
that the object represents, decodes this data into hits, and places the hit information
into Plane-ld objects. The Readout object is also responsible for creating the Plane_ld

16

objects which represent the planes connected to the readout that the Readout object
represents. The messages defined by the Readout class are shown in Listing 8.

The design of the Readout class is sufficiently interesting to warrant some discussion.
The unpack-event 0 messages are responsible for extracting hit information, for the
readout the Readout object represents, from the event data. This data is obtained from
an object of the Event or Mc_Event class. (Both classes will be discussed later.) These
messages also create the RawHit-Id object for each hit and place these objects in the
appropriate Plane-id object. The creation of Hit-Id objects from RawHit-ld objects
is accomplished with the decode-event 0 message.

The Readout class, like several other classes in the event delivery system, imple-
ments a two tier error reporting system. The first level is for the novice/casual user,
i.e., the category into which most users fall. The second tier is for the expert user,
e.g., the designer/maintainer of the readout electronics represented by the particular
object. For the expert user, the unpacknum() and decodennm() messages return an
integer code specifying the exact error that occurred during the unpacking and decoding
processes. For the novice user, information on whether or not the error is fatal is most
important. For this reason, the class maps the integer error code into error levels or
states that tell the users if an error is fatal and how to recover from an error if it is not
fatal. The unpack-event 0, unpack-status 0, decode-event 0, and decode_status 0
messages return this type of error information. (As an example, the return type of the
unpack-event0 message is UnpackStatus. The valid values for this t,ype are of the
form unpackxxr where zzz can be okay, bad-event, bad-tape, bad-device-data, or
otherfatal-error. The bad-event state tells the user that the current event is “COF-
rupted” but that the rest of the events in the file are “okay”. The bad-tape state tells
the users that the current event, along with the rest of the events in the file are COI-
rupted. The bad-device-data state tells the users that the current event is okay but the
data for the requested device or readout is corrupted. Finally, the otherfatal-error
state tells the user that some other error has occured that prevents the system from
continuing.) It should be noted that an error will also trigger the output of an error
message describing the error to a log file.

In order to accomplish its assigned tasks, the Readout object requires information
about the configuration of the readout system it represents and about the detectors
connected to it. Since this information is subject to change, each readout system has
a set of parameter files associated with it that tracks its configuration. (The number
of parameter files for each readout system is different, as are the contents of the files.
The parameter tiles are inherited from the official FORTRAN data analysis system.
However, the official FORTRAN routines that read these files are not used by the 00
event delivery system.) These files are “dated” by tape set number, i.e., each set is valid
only for a range of tape set numbers. (Data tapes are grouped into tape sets. There are
twelve tapes per set. Each set is given a tape set number. Experiment data is written
to tape sets, i.e., sequential events are written to different tapes in the tape set.) The
update0 message is used to tell the Readout object to configure itself, i.e., read the

17

parameter files appropriate for the tape set number that is passed as a parameter t,o the
update () message.

From the description of the Readout class, several questions naturally arise. First,
how are Plane_ld objects transferred to Detectorld objects so they can be accessed?
Second, how are the differences, e.g., different data encoding schemes, different parame-
ter files, etc., in the (physical) readouts handled? The answer to these two questions is
inheritance and derivation.

The first question is easily answered by using the OOP feature of multiple inheritance.
With multiple inheritance, a class can be created that inherits the behavior of multiple
base classes. A class called Readoutld was derived from both the Readout class and
the Detectorld class. The Readoutld class inherits the messages for handling the
unpacking and decoding of hit information from the Readout class and inherits the
messages for handling the distribution of hit information from the Detectorld class.

The differences in the different readout systems are handled by deriving a new class
from Readout-ld for each readout system. These classes redefine those messages that
need to be re-implemented to cope with the differences in the physical readout systems.
Currently, there are 8 derived classes, Silicon, Drift, PC, Pcb, Cc-Wire, Rpc, Muon, and
Pad classes, corresponding to the different readouts present in the spectromet,er. (Some
are derived from the Readout2d class.) Since none of the 8 derived classes defines any
new messages, the processes of unpacking, decoding, and delivering hit information to
the end user are the same for all the readout systems. Thus, once the end user has
learned how to work with one readout system, he/she has learned how to work with all
of them.

Unlike the other classes encountered so far, when writing a data analysis program,
an end user must create objects of these eight derived classes. Objects of the other
previously discussed classes are all “pre-assembled” for the end user by objects of these
eight derived classes. That is, the user only needs to create pointers to objects of these
pre-assembled classes. (The syntax for doing this is shown in appendix A.) This leads
to the question, how are objects created?

Creating objects in C++ is syntactically very similar to creating variables of a built-in
type like double OF int. The only difference is that the object name may be followed
by a parenthesized list of parameters. A special message defined by the class, called the
constructor, defines the number of parameters in the list. It also defines what is done
during the creation of an object. (C onstructor is C++ terminology, not object-oriented
terminology.)

The constructor can be distinguished from the ot,her messages defined by a class
because it is given the name of the class, e.g., Readout (const int tape.setnumber)
is the constructor for a Readout object. Also, the constructor message does not specify
a return type because it returns no value. (In reality, the constructor for this class
takes no arguments. However, the classes derived from Readout, e.g., Pcb, Drift, Muon,
etc., all define constructors with the same argument as this fictitious constructor.) The
following code fragment creates a Readout object with the name myreadout :

18

Readout my-readout (2456) ;

The number 2456 is passed to the constructor of the Readout class. Once the object
has been constructed, it is ready to receive messages.

Finally, some complex constructors can fail. The correct method for dealing with this
possibility is to utilize the exception handling facilities provided by the C++ programming
language. (Many OOPLs provide language supported exception handling.) However,
since most currently available compilers do not support this feature, an alternate method
for handling constructor failure is used by the event delivery system. The init-okay0
message is defined by all classes in the system that possess constructors that can fail.
This message returns false if the constructor fails, otherwise it returns true.

The next logical question that arises at this point is, how is event data delivered to
the Readout objects? The answer to this question is the topic of the next section.

5.5 Events

A Readout object obtains event data from an Event object which, in turn, gets the
data from a Raw.Event object. The Event object holds the data for one event. It also
provides access to a few items that are embedded in a section of the event data called
the event header. The messages defined by the Event class are shown in Listing 9.

One peculiar aspect of the constructor for the Event class is the tape number ar-
gument. The Event class requires tape set dependent information to accomplish its
assigned tasks. (These tasks are not apparent from the messages defined by the class.)
However, unlike the Readout class, the Event class does not define an update0 mes-
sage to update this information. Instead, the the get-event 0 message automatically
updates this information if it is passed a RawEvent object containing an event from a
new tape set.

Like the Readout class, the Event class provides a two tier error reporting system.
The eventz.tate() returns a simple five state error code suitable for the novice user.
The statusnum0 returns an integer code identifying the exact error encountered during
the execution of a message.

The Event object obtains event data from a Raw_Event object. This object, in turn,
obtains event data from one of the data sources to be described next. The Rav_Event
class is completely uninteresting from the end user’s perspective. It is an implementation
artifact that could have been eliminated at the cost of increasing the implementat,ion
time by a few days. This is because the elimination of the class would have increased
the complexity of the Event class, albeit only slightly. The end user sends no messages
to a Raw_Event object.

19

5.6 Data sources

The last major component of the event delivery system is the data input section. The
event delivery system currently provides four sources of event data: tape, disk file, Monte
Carlo, and event server. This last source allows a group of networked workstations to
run analysis code on event data distributed by a single workstation.

The behavior that was desired for all the data source objects was that of a single
virtual file containing a series of events. The adoption of this common abstraction
simplifies working with objects of all four classes. It should be noted that this virtual
file model deviates from the actual storage format of the event data in the four data
sources, sometimes significantly. This idealized behavior is yet another example of data
abstraction.

The logical way of obtaining identical behavior from all four classes of data source
objects is to derive them from a common base class. The base class would then define
the messages implementing the single file behavior. However, for historical reasons, this
was not done.

5.6.1 Tape and Disk

The first two classes that were developed were the Tape and Disk classes. Objects of
these classes respectively represent data tapes and disk files. Identical behavior from
objects of these two classes is obtained by deriving the two classes from the DataSource
class. The messages defined by this latter class are shown in Listing 10. Since the Tape
and Disk classes define no new messages, their behavior is completely defined by the
DataSource class.

It should be noted that the Tape and Disk classes are quite different from the actual
sources of data. The disk file contains event data intermixed with FORTRAN format
information. Also, at the beginning of the disk file is a special block of data containing
what is called, in E771 terminology, the tape header. (This file format is defined by
the official FORTRAN analysis system.) On the other hand, data on tape is contained
in multiple tape files, with each file segregated into 65536 byte blocks, each containing
multiple events. Like the disk file, at the beginning of the tape is the tape header
information. Despite the radically different formats, to the end user, both sources objects
“look” like a simple file containing a series of Raa_Event’s. (Note : The tapeset ()
message is the only message that accesses information from the tape header. Although
all the tape header data is read and “decoded”, the DataSource class does not provide
messages to access this information. This can be changed in a few minutes, but the
information has never been needed.)

The constructors for the Disk and Tape classes are defined to take two arguments.
The first argument to the Disk constructor is the file name of the disk file. The first
argument to the Tape constructor is the device name for the tape drive. The second
argument to both constructors is the input buffer size.

20

5.6.2 Data Clients and Data Servers

The Data-Client class defines an object that reads events distributed by an object of
the DataServer class. This latter class defines an object that reads event data from a
tape and distributes events to different computers running analysis code. Each computer
running analysis code uses a Data-Client object to retrieve the event data that has been
sent to it by the DataServer object. With these two classes, an analysis program that
is built with the event delivery system can be easily modified to utilize the processing
power of several workstations to analyze events while requiring the presence of only one
physical tape drive.

Like Disk and Tape objects, a Data-Client object behaves like a single virtual
file containing a series of events. However, the lack of a suitable response to the
rewind() and skiprecord messages prevents the class from being derived from the
Data-Source class. (Actually, it could have been derived from the DataSource class if
the rawind() and skiprecord messages were redefined to either do nothing or return
with an error.) The messages recognized by the Data-Client are the same, i.e., have the
same name, as those of the DataSource class except the rewind0 and skiprecord
messages are not defined. Thus, for most applications, a Data-Client object works just
like a Disk or Tape object. However, not deriving Data-Client from the DataSource
class has some drawbacks. For example, the address of a Data-Client object cannot be
stored in a pointer to a DataSource class.

The constructor for a Data-Client object takes two arguments. The first argument
is a character string used to identify the Data-Client object from other Data-Client
objects in data analysis programs running on other workstations. The second argument
is the input buffer size.

A DataServer object distributes the events to objects of the Data-Client class.
The messages declared by the DataServer class are shown in Listing 11. The program
which distributes events is very simple, it creates a DataServer object, verifies that it
was correctly constructed, sends it the initialize0 message, and finally, sends it the
start0 message. (Note: Tape header data is distributed to all clients, as should be
apparent from the fact that the Data-Client class defines the tapaxet () message.)

5.6.3 Monte Carlo

Monte Carlo data is handled differently from data obtained directly from the experiment.
(Recall the existence of a special unpack-event 0 message, with McSvent as an argu-
ment, for the Readout object.) There are three reasons for this fact. First, Monte Carlo
data is stored in a format that is significantly different from experiment data. (However,
when decoded, it provides the same information that real data provides, along with
some additional information.) Second, the other data sources were implemented before
the possibility of reading Monte Carlo data was even considered. FinalIy, the design
goals for the Monte Carlo system were completely different from those of the other data

21

SouIces. Because of these differences, the system for reading Monte Carlo data will not
be discussed completely.

The Mclvent class is the main class built for handling Monte Carlo data. From the
end user’s perspective, it combines the functionality of the DataSource, Rav_Event, and
Event classes. The messages defined by the class are shown in Listing 12. In addition
to the message defined to return the next Monte Carlo event, the class also defines
messages accessing specific information about the event. This information is useful in
verifying the performance of data analysis code. Finally, the MC-Event class defines the
mysterious message append(). This message is used in the process of initializing the
Mcxvent object. This process will not be discussed.

5.7 Convenience Classes

The classes discussed in the previous sections are all the classes (with the exception
of the “2D” classes) needed to decode the entire spectrometer. In addition to these
classes, several auxiliary classes are defined to simplify the task of working with the
event delivery system.

5.7.1 Readout Lists

The simplest convenience class to describe is the ReadoutList class. As its name
itnplies, an object of the class holds a list of Readout objects. The object is designed
to behave as if it contains an array of Readout objects. It is used to simplify the
process of sending messages to the various readouts. Instead of explicitly sending the
unpack-event 0, decode-event 0, and update0 messages to each readout object, a
looping construct can be used to send these messages. This is shown in the code sample
shown in appendix C. The class also serves as a convenient “holder” for readout objects.
The messages defined by the ReadoutList class are shown in Listing 13.

A list of readout objects is created by creating a ReadoutList object and appending
Readout objects to the Readoutlist object with the append0 message. Once all
the desired Readout objects have been appended, the Readout_List object is sent the
make-table0 message, which generates an array access table. This table implements
the array-like behavior.

5.7.2 Groups and Group lists

The final set of convenience classes provided by the event delivery system organize the
Planeld objects into more convenient groups. Due to time pressures, these classes do
not exhibit the functionality that was originally envisioned for them. However, they are
useful even in their current forms.

Group-id objects store Planeld objects in an array-like format. However, the class
only defines the messages needed to access the list of Planeld objects. (see Listing 14)

22

It is the responsibility of the classes derived from this class to define the messages that
decide which Plane-ld objects will be stored. (It is the implementation of this aspect
of the Groupld class that is not what was originally envisioned.) Some of the more
useful derived classes group planes by view (i.e., the orientation of the individual wires
or strips in the detector), by their position relat,ive to the analysis magnet, and in order
of their position along the beam line.

The Croupld&.st class provides the same functionality as the Group-ld class except
that it holds Group-id objects instead of Plane-Id objects. The messages defined by
the Group-IdList class are shown in Listing 15. As with the Group-Id class, classes
derived from the Group-ld_List class are responsible for determining what Group-id
objects to hold. Currently, the system provides classes that hold groups of silicon micro-
strip detector (Si) planes, i.e., those Si planes that are downstream of the target (The
incoming proton beam is defined to flow from upstream to downstream.); groups of beam
Si planes, i.e., those Si planes that are upstream of the target; groups of upstream non-Si
planes, i.e., upstream of the analysis magnet; and groups of downstream non-Si planes,
i.e., downstream of the analysis magnet. Each group within these group lists contains
planes of a single projection OF view. That is, the wires or strips on the different planes
in a group are oriented in the same direction.

6 Using the Event Delivery System

A description of the event delivery system does not show the complete benefits of the
object-oriented system. For this reason, a sample program using the event delivery
system is shown in appendix C. An additional reason for providing a sample program
is to verify that the “mental picture” of an 00 system, developed in the mind of the
reader, resembles reality. For this latter reason, it is essential that the sample program
be examined.

The sample program uses the event delivery system to decode all the detectors in the
E771 spectrometer. The code is fully commented and should be understandable even to
those unfamiliar with C and C++. (In order to keep the length of the appendix short,
error messages have been deleted and non-critical message “passing” has been omitted
in the sample program.) One point to emphasize is the building block quality of the
program. The process of constructing the program consists of three steps. First, the
classes to be used in the program are defined with the #include directives found at
the beginning of the program. Each “included” file contains the definition of a class.
(Unfortunately, due to poor design, some contain the definition of more than one class.)
It should be emphasized that these files are not like the files containing COMMON
blocks found in FORTRAN. No objects or global variables are created in these class
definition files. Second, objects of the classes are created. Third, messages are sent to
the objects to accomplish the desired tasks.

The example in appendix C shows a standard use of the event delivery system. Other

23

conventional uses of the system are to create programs that analyze the performance
of individual detectors. These other programs can be rapidly constructed because of
the building block characteristics of objects. These programs can then be turned into
on-line detector monitoring programs by replacing one line of code. Instead of creating
an object of one of the supplied data sources, an object of a new “on-line” data source
class would be created. This object would retrieve event data directly from the central
event processor in the spectrometer readout system. Since it is possible to have the
new class understand the same messages as the supplied data source objects, no other
changes would have to be made to the program.

The above programs are relatively ordinary uses of the event delivery system that are
easily duplicated in a system that is designed and implemented using standard techniques
and languages. However, there is one program that would be hard to duplicate with such
a system without significant planning before the system was implemented. This program
depends almost completely on the idea that classes are just like types and objects are
just like variables. Because of this fact, it is possible to have multiple objects of the
same class. Therefore, it is possible to create multiple Silicon, Rpc and other readout
objects in a single program. Since each such object stores the hit information from a
single event for the detector system it represents, it is easy to construct a program that
works with hit information from multiple events, for each detector, at the same time.

7 Conclusions

The following is a short list of some of the benefits of the application of OOP to the
event delivery system.

1) The event delivery system looks like the E771 spectrometer and data acquisition
electronics. Both consist of hits, detector planes, readout systems, etc. Furthermore,
all the components of the event delivery system “work” just like their counterparts in
the E771 spectrometer and data acquisition electronics. All the “pieces” in the event
delivery system are components with which the experimenter is familiar.

2) The use of classes and objects has made the task of decoding selected detector
groups as easy as creating variables.

3) Through the use of derivation, similar objects (i.e., objects of related classes)
“look” and “act” the same. For example, all the readouts are updated, decoded, and
unpacked in the same way.

4) Differences between similar objects are “hidden” until they are needed. For exam-
ple, RawDriftHit objects work just like RawHit-id objects. However, if drift distance
information is desired, it is easily obtained from the RavDriftHit objects.

5) Write access to information is restricted to “authorized” users by the message
interface. For example, the hit information contained in Hit-ld and RawHit-Id objects
cannot be altered by the end user. Access to plane information contained in Plane-ld
objects is similarly restricted.

24

6) Implementation details are well hidden from the user by the class/object con-
struct. For example, parameter information required for decoding and unpacking hits is
completely hidden within the Readout objects. The update 0 message is the only clue
that additional information, besides the event data, is required by the Readout object.

7) Information that is “logically” connected is localized within a common object. For
example, information about a detector plane like detector position, detector geometry,
and hits on the plane are all contained within a Plane-id object.

8) Classes and objects have eliminated the need for COMMON blocks and global
variables.

9) The class hierarchy provides a means of maintaining continuit,y between currently
implemented components and future additions to the system. For example, the Readout
class provides a templat,e from which new readouts can be derived.

A discussion of OOP, in general, is now in order. First, the comment most pro-
grammers make about a description of an 00 software system is: there is nothing here
that can’t be accomplished in language XXXX, where XXXX is the language that the
programmer is currently using. This is typically followed by the comment: the object-
oriented system looks just like a well designed system obtained using traditional design
techniques. There are several responses to these comments.

First, as was stated before, it is definitely possible to implement a system designed
using OOP techniques with a traditional programming language. However, the questions
that need to be answered include: how clean and intuitive is the resulting system? How
hard is it to construct such a system and how easy is it to modify it once it is w&en?
In other words, is this an unnatural use of the given language? Could things have
been simpler if the language provided support for the “programming paradigm”? If the
resulting system is cluttered by implementation details then it is clearly not optimal.
(The sample program in appendix C is provided to show the level of “cleanliness” that
can be achieved with an OOPL.)

Second, it is true that object-oriented systems look like well designed systems ob-
tained using traditional design techniques. However, one can clearly turn the state-
ment around: well designed systems created using traditional design techniques look
like object-oriented systems. For example, the UNIX file system can be interpreted as a
system designed around a generic file class with messages like ioctl, open, read, write,
close, etc., being recognized by objects of the file class [2, 121. Different physical de-
vices are then “derived” from the base file class. However, the real question is: which
design methodology more consistently generates a well designed system? For the reasons
outlined in this paper and others reasons that are not mentioned here, many software
engineers believe that the answer to this question is object-oriented design.

25

8 Acknowledgements

This work was partially supported by the National Science Foundation under Contract
No. PHY-9121416. The author was also supported by a Department of Education fel-
lowship during part of the development of the system.

26

A Addresses and Pointers

Addresses and pointers are an integral part of C++. “A pointer is a variable that con-
tains the address of another variable.” [2, Page 931 The primary use of pointers in C++
programs is to provide an alternate method of accessing a variable or object. The closest
analogue to a pointer in FORTRAN is th e d ummy argument of a subroutine OI function.
For example, consider the following subroutine :

line 1 : SUBROUTINE SETVAR(X)
line 2 : REAL X
line 3 : X = 10.0
line 4 : RETURN

Within the SETVAR subroutine, the dummy variable name X serves as an alternate “con-
nection” OF “handle” to the variable that was passed to the subroutine. The subroutine
sets this latter variable to the value 10.0. Consider the following code fragment.

line 1 : REAL A
line 2 : REAL B
line 3 :
line 4 : CALL SETVAR(A)
line 5 : CALL SETVAR(B)

In the first call to SETVAR, the dummy argument X provides an alternate way of accessing
the variable A within SETVAR. The value of A is 10.0 after the call to SETVAR. Similarly,
in the second call to SETVAR, X serves as another “name” for B. The value of B after the
call to SETVAR is also 10.0. It should be stressed that a pointer should NOT be thought
of as the index of an element in an array. One reason is that an index to an element of
an array is an incomplete reference to that element. An index is useless unless the array
(or arrays) into which the index “points” is accessible. This implies that any function
(or subroutine) that utilizes an index must have access to the array (or arrays). But
this exposes the contents of the entire array to the function, making it vulnerable to
accidental or malicious alteration.

The following fragment of code shows how pointers are created and used in Ctt :

27

line
line
line
line
line
line
line
line

double a, b;
double *x:

x = &a;
** = 10.0;
*x = *x + 5.0;
x = Bb;
*x = 7.5;

Line 1 defines the variables a and b to be double precision variables. Line 2 defines the
variable x to be a pointer that can hold the address of a double precision variable. In
line 4, the address of the variable a is stored in the pointer x. The address is returned
by the operator &. At this point, variable x is said to “point to a”. Line 5 sets the
variable a to 10.0. (Note the asterisk in front of x. Without the asterisk, x is a pointer
containing the address of a. The construction *x is an alternate “name” for the variable
whose address is contained in x, in this case, the variable a. For example, in line 6, *x
is equivalent to a. In line 8, *x is equivalent to b.) L’ me 6 sets the variable a to 15.0.
Line 7 makes x point to b, i.e., places the address of the variable b into x. Line 8 sets b to
7.5. This code sample shows what pointers are and how they can used. (However, these
are not very interesting uses of pointers.) In C++, pointers are part,icularly important
because they are the primary means by which objects are passed to other objects and
to and from functions.

One additional piece of information that is of use is the method of sending a message
to an object that is being pointed at by a pointer to an object. Consider the following
code sample :

line 1 : Hit-id *hitqtr;
line 2 : double x-coord;

line 3 : hit-ptr = & hit-object.;
line 4 : x-coord = hit-ptr->xpos();

The first line defines hit-ptr to be a pointer to an object of the Hit-ld class. The
second line defines the double precision variable x-coord. The { } contains the code
that creates the Hit.-ld object hit-object. The third line sets hit-ptr to point to the
hit-object object. The fourth line sends the xqos() message to the object pointed at
by hit-ptr. It then places the returned transverse coordinate for the hit in x_coord.
This last line should be compared to the syntax for sending the x-pos() message to a
Hit-id object shown in section 5.1. Note the use of the -> here, in place of the used
in the example in section 5.1.

28

B Casting

In the discussion about RawHit-ld and Hit-ld objects, it was mentioned that the
raw&it0 message, defined by the Hit-id class, returns the address of a RawHit-id
object. However, some Hit-ld objects will return addresses to object,s of classes derived
from the RaaHitAd class. This presents no problem if the messages sent to the returned
object are restricted to the messages defined by the RawHit-ld class. However, if the
returned address is actually the address of an object of a class derived from RawHitAd,
it is sometimes necessary to send that object one of the messages defined by the derived
class (but not by the base class). These messages can be sent to the object only if the
address is first “cast” to an address of an object of the derived class. The following code
shows how this is accomplished.

line 1 : RawHit-ld *hitqtr;
line 2 : RawDriftHit *drifthitqtr;
line 3 : double drift-dist;

line 4 : hit-ptr = hit-object ravhit 0 ;
line 5 : drift&At-ptr = (RavDriftHit *) hit_ptr;
line 6 : drift-dist. = drifthit-ptr->driftdistance();

The first two lines define pointer variables to RawHit-Id and RaaDriftHit objects
respectively. The third line defines a double precision variable. The { } contains the
code that creates the Hit-ld object, hit-object. The fourth line retrieves a RawHit-ld
object from the Hit-id object (it is assumed that what is returned is really the address
of a RavDriftHit object). The fifth line casts (or changes) the address contained in
the pointer hit-ptr into an address of a RawDriftHit object. This address is then
placed in the pointer variable drifthit-ptr. The drift-distance0 message can now
be sent to the object. This is done in the sixth line.

29

C Complete Spectrometer Decoding

#include <iostream.h>
#include <stdlib.h>
#include "defin8s.h"

#include "tape.h"
#include "raw-event. h”
#include "event.h"
#include "readout.h"
#include "si1icon.h"
#include "drift.h"
#include "pc.h"
#include "pcb.h"
#include "ccrir8s.h"
#include "pad.h"
#include '9nuon.h"
#include "rpc.h"
#include "group-1d.h"
#include "grp-1dfypes.h"
#include "grp-1dlist.h"

/* include the declamtion of the C++ */
/* standald library classes *,’
/* include the definition of the types */
/* (not clams) defined by the event delivery system */
/* include the declaration of the Tape class */

;
* include the declaration of the RawXvsnt class */
* include the declaration of the Event class */

5

* in&de the declaration of the Readout class */
* include the declaration of the Silicon class */

;

* include the declaration of the Drift class */
* include the declaration of the PC class */

;

* include the declaration of the Pcb class */
* include the declaration of the Cc-Wires claaa */

/* include the declaration of the Pad claw */
/’ include the declaration of the Kuon clam */

* include the declaration of the RPC clasa */
;* Th e.ve three statements include the declaration */
/* of all the classes in the group and '/
/* GroupldLiat class hiemrchies */

/* This is the start of the main body of the program. argc and argv are, respectively ‘/
/’ the number of arguments passed to the program from the command line and the */
/’ character amy containing the command line argumente. ‘/

main(int argc. char +argvCI)

:*c t ma e a tape object connected to the tape drive specified in the command line. */

Tape dataesource(argv[i], 65535);
if (datasource.initakay() != true) /* If constructed ilacowectly */

exit(i); /* teminate ezecution */
/* ! = ia like the FORTRAN BE. */

int tapesetnuin;
tapelretnum = data_source.tape_set(); /* Get the tape set number of the tape ‘/

P.av_Event ra~~evfmt;
/’ from the Tape object */
/’ Create a RawEvent object *,’

Event event(tape-setnum); /’ Create am Event object ‘/
if (event.initokayO != true) /* If constrvcted incorrectly */

exit(l); /’ teminate ezecution */

Silicon silicon(tapesetnum);
Drift drift(tapeaetnum);
PC pc(tapesetnum);
Pcb pcb(tapeesetnum);
Cc-Wires ccsires(tape_setnum);
Pad pad(tapeaetnum);

/' Create a Silicon object */
/* Create a Drift object */
/’ Create a PC object */
/’ Create a Pcb object */
/’ Create a Cc-Wires object */
/* Cm& (1 Pad object ‘/

30

Rpc rpc(tapesetnum); /* Create a Rpc object */
nuon muon(tape_setnum); /* Create a Uuon object */

/* The initakay medsa~e should be sent to all eight of the readout objects ‘/
/’ created above. In this ezample, the merrsage is sent to only two of them */

if (silicon.initakay() != true) /* If constructed inconectly */
exit(i); /' tenninnte ezecution '/

if (drift.initokay() != true) /* If constructed incorrectly */
exit(i); /* terminate ezecution */

ReadoutList readoutlist; /' Create a ReadoutList object */

readoutlist.append(&silicon);
readoutlist.append(&drift);
readoutlist.append(tpc);
readoutlist.append(&pcb);
readoutlist.append(kccwires);
readoutlist.append(&pad);
readoutlist.append(&rpc);
readoutlist.append(&muon);

/* Append the readouta to the wadovt list

if (readoutlist.makefable() != success) /* Create the array access table ‘/
exit(l); /* St P ‘f 0 t an WTOT ocCzbT8 */

*/

/* Create the group list objecta. Each group list contains a list of g”upa. Each group */
/’ contains a list of planes of a ringle projection. The Si QTOUP list contains Silicon (5) */
/* planes downstream of the target. The Beam Si group list contains Si planes */
/’ uppstream of the target. The Up group contains non Si planes upstream of the ‘/

/* analysis magnet. The Dn group contains non Si plonea domnatream of the magnet. ‘/

CrpldSiList si-planes;
CrpldEBeamSiList beamplanes;
Crp-id-UpList upstreamqlanes;
Crp-1dDnList downstreamqlanes;

/* Define several variablee and pointer variablee needed later. ‘/

Group-id *groupqtr;
int numberafgroups;
int groupnumber;
PlaneAd rplaneqtr;
int number-of-planes;
int planenumber;
Hit-id *hit_ptr;
int number-ofAits;
int hitnumber;
Readout *readout_ptr;
int readoutnun;
int numberafzeadouts:

/' Define (1 pointer to a Group-id object */

/* Define a pointer to a Plane-id object */

/' Define a pointer to a Hit-id object */

/* Define a pointer to a Readout object */

31

/” Get events from the datasource object until an WTOT occurs. An Errol */
* occum when either a real error occurred OP when no mow events ave found.

;* Th
*/

e end_oflile() message can be sent to the datasource object to determine if */
/* the WTDT zuaa real or if the end of the "virlual" file wa8 reached */

uhile(datasource.getlav-event(rav_event) == success)
I

/* Retrieve B nezu event from the RawEvent object. Stop if an Errol DCCUTB. */

if (event.get~vent(raa_event) != success)
exit(i);

tape_setnm = evant.tapenuin(); /* Retrieve the tape number for the event ‘/

/’ Set up a loop over the readouta in the readout list. “/

numbarafzeadouts = readoutlist.numleadout.0;

for(readoutnum = 0; readoutnum C numberafreadouts;
readoutnum = readoutnun + 1)

I
,‘* Get the (readoutnun + 1) Readout object from the readout list and send it the */
/* update, unpack-event, and decode-event messayes. Stop ifaan error occurs. */

readoutqtr = readoutlist.getlaadout(readoutnum);

if (readoutptr->update(tapesetsum) != success) /* Actually, update0 */
exit(l); /* needs to be sent only when the tape set nvmber changes. */

if (readout~tr->unpacksvent(event(vt) != unpack-okay)
exit(l);

if (readout~tr->decode~vent(O) != decodeskay)
exit(l);

1 /’ End of the loop over readouts. */

/* Clear the group lists and rebuild them. (This really only needs to be done when */
/* the tape aet number for the nezu event is different from the previous event) */

si-planes.clearlist();
beamplanes.clearlist();
upstre~planes.clsarlist();
dovnstreamplanes.clearlist();

if (siplanes.append(&readoutlist) != success)
exit(l); /* Ewor while rebuilding. Stop. */

if (beam_planes.append(&readoutlist) != success)
exit(l); /* Error while rebuilding. Stop. */

if (upstrean~lanes.append(Qreadoutlist) != success)
exit(l); /’ Error while rebuilding. Stop. */

if (dovnstreamplanes.append(&readoutlist) != success)
exit(l); /* Error while rebuilding. Stop. */

32

/* As an ezample, groups will be retrieved from the silicon gwup list, one by one. From */
/* each retrieved group, planes will be retrieved, one by one. From each plane, hits will */
/* be retrieved, one by one. The information from each hit will then be printed out. */

/* Loop over the gFoupa in the silicon gmvp list */

number-ofqoups = si_planes.numgroupsO;

forcgroupnumber = 0; groupnumber < number_ofgroups;
groupnumber = groupnumber + 1)

I
/* Get the (groupnumber + 1) groupfrom the silicongroup list and */
/* loop over the planes in the group */

groupqtr = si-planes.group(groupnumber);
numberof.planes = group_ptr->num~lanes();

for(planenumber = 0; planenumber < numberaf-planes;
plansnumber = planenunber + 1)

I
/" Get the (planenumber + 1) plane from this group and loop over the hits in it */

planeqtr = group4tr->getplane(planenumber);
numberof_hits = plans-ptr->numAits();

forchitnumbar = 0; hitnumber < number_of_hits;
hitnumber = hitnumber + 1)

I
/* Get the (hitnumber + I) hit from the plane and print the information in it */
/* Information from the RavEit-id object associated with the Hit-id obiect */
/* (and retrieved by sending the raa_hitO mesaage to the Kit-id object) */
/’ will not be accessed or diaployed. */

hitptr = planeqtr->gethit(hitnunber);

/” The Ccmt construct below is like a FORTRAN WRITE statement */

tout << hit-ptr->r_pos() /” Print the transverse position */
<< hit-ptr->zpos() /* PTint the Z position */
<< hit-ptr->localz() /’ Print the local Z position */
<< hitqtr->sigma() /* Print the position uncertainty */
-c< hitqtr->flagO ((endl; /* Print the value of the US~P */

/’ alterable flag */

1 /* End of the loop over hita in the plane */
1 /* End of the loop over &Lelr in the group */

1 /* End of the loop over group in the group list */

} /’ End of the loop one? events in the data eou~ce ‘/

1 /* End of the proglnm */

33

References

[l] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Publishing
Company, Reading, Massachusetts, second edition, 1991.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programmin~g Language. Pren-
tice Hall, Englewood Cliffs, New Jersey, second edition, 1988.

[3] Grady Booth. Object Oriented Design. Benjamin Cummings Publishing Company,
Inc, New York, New York, 1991.

[4] Adele Goldberg and David Robinson. Smalltalk-80:The Language and Its Imple-
mentation. Addison Wesley Publishing Company, Reading, Massachusetts, 1983.

[5] Bertrand Meyer. Eifleb : the language. Prentice Hall Object Oriented Series. Pren-
tice Hall, Englewood Cliffs, New Jersey, 1992.

[6] L. Spiegel, et.al. A combination drift chamber/pad chamber for very high readout
rates. Technical Report FERMILAB-TM-1765, Fermi National Accelerator Labo-
ratory, November 1991.

[7] Harry H. Bingham. Progress on E771 B d t t’ e ec ion experiment. In A. I. P. Con-
ference Proceeding No. 261, page 73. American Institute of Physics, 1992. Santa
Monica Workshop on Rare and Exclusive B and K Decays and Novel Flavor Fac-
tories.

[S] T. Alexopoulos, et.aZ. B physics at FNAL E771. In Nuclear Physics B (Proc.
Suppl.), volume 27, pages 257 - 262. El sevier Science Publishers B.V., 1992. 3rd
Topical Seminar on Heavy Flavors, San Mini&o.

[9] Edward N. Yourdon and Larry L. Constantine. Structured Design: Fundamentals of
a Discipline of Computer Programs and System Design. Prentice Hall, Englewood
Cliffs, New Jersey, 1979.

[lo] GO Corporation. PenPoint architectural reference. Addison Wesley Publishing
Company, Reading, Massachusetts, 1992.

[ll] Douglas A. Young and John A. Pew. The X Window System : Programming and
Applications with Xt. Prentice Hall, Englewood Cliffs, New Jersey, open look edi-
tion, 1992.

[12] W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison
Wesley Publishing Company, Reading, Massachusetts, 1992.

34

double x-pos(void)
/' retvns the transverse position of the hit ‘/

double z-pos(void)
/* returns the position of the hit along the beam azis */

double localz(void)
/* same aa the previous meamge but in a translated coordinate ‘/
/* system (it is needed for numen’cal reasons) ‘/

double sigma(void)
/' mtams the vncerlainty in the transverse coordinate */

Plane-id *getqlane(void)
/* returns the address of the Plane.id object representing */
/* the plane in which the hit occured ‘/

RawHit-id +getxaahit(void)
/* relwm the addwsa of the RawHit-Id object from which */
/* the Hit-id was derived */

int flag(void)
/’ return8 the value of a user aettable flag in the RawHit-id object */

void setllag(const int flag-value)
/’ seta the value of the we? nettable flag in the RauEit_id obiect */

Listing 1: Hit-ld class messages

int sirenum(void)
/’ retwna the wire number for the hit */

int flag(void)
/* returns the value of the user &table flag for the hit */

void setllag(const int flagsalue)
/* sets the value of the wei- aettable flag to flag..value */

Boolean mute-carlo(void)
/* return true if the hit ums generated by the Monte Carlo */

MonteDuloEit *trackinfo(void)
/* returna the address of the Monte-Carlo-Hit object containing */
/* the tagging information provided by the Monte Carlo simulation */

Listing 2: RawHit-id class messages

int track(void)
/* returns the track number for the track that created the hit */

int vertex(void)
* returns the vetiez number for the vertezfrom which the track,

$ which g
‘/

enerated the hit, originated */

Listing 3: MonteXarloHit class messages

35

PlaneId id(void)
/* returne the nume of the detector group to which the */
/* detector belongs */

Plane-Type type(void)
/* returns the detector type, i.e., &con strip, drift, etc. */

Vies viea(void)
/* returns the orientation of the wires or strips ‘/

double z-pos(void)
/* returns the position of the detector along the beam azis */

double localx(void)
/* same IIS the previous message, but in a translated */

/* coordinate system */
double first-uire_pos(void)

/’ returns the tranaverae position of the “first” wire a+ strip */
/* in the plane */

double last-wirepos(void)
/* retvns the traneveree position of the “last” wire or strip ‘/
/’ in the plane */

double cos-xy(void)
/* return8 the cosine of the angle the wiwe OP strips make with */

/* a standard azis */
double sinzy(void)

/” returns the sine of the angle the wires or stripa make with */

/* a standard azis
/int nunnaw_hits(void)

/* returns the number of raw hits on the plane */
int numhits(void)

/* returns the number of hita OR the plane */
HitAd *closestixit(const double x-coordinate)

/’ return8 the address of the hit object closeat to */
/* the transverse coordinate specified in the argument */

RaaEit-id *getxawAit(const int index)
* returns the address of the (index + 1) RawEit_ld in the plane.

;* Th
*/

e + 1 is present because the clam followa the C language */
/* pmctice of referencing the first array element with a ZERO indez. */

Hit-id *gethit(const int index)

/* returns the address of the (index + 1) Hit-Id in the plane ‘/

Listinn 4: Plane-ld class messages

36

double basksig(void)
/* returns a base uncertainty associated with a hit */
/* used in calcalating the vncertainty in a hit */

double wirespace(void)
/’ returna the spacing between wires ‘/

double xspin(void)
/* returna the distance to the “left” edge of the detector */
/* from the beam line */

double xmax(void)
/* returns the distance to the “right” edge of the detector */
/* fiona the beam line */

double yain(void)
/’ returns the distance to the “bottom” edge of the detector */
/* from the beam line */

double y~max(void)
* returns the distance to the “top” edge of the detector ‘/

;* from the beam line ‘/
double x-offset(vcid)

/* returns the z location of the center of the detector */
double y-offset(void)

/* returns the y location of the center of the detector plane */
InJlaneAnsaer in-plane(const double reaL_coord)

/* determines if the z coordinate pawed as an argument is ‘/
/* within the active region of the detector ‘/

In_PlaneA\nswer inqlane(const double reaL.coord,
const double real-y-coord)

/’ determines if the (z, y) position passed as can argument */
/* ie within the active region of the detector */

Listing 5: Uire_Plane_ld class messages

PlaneList-id *getplanes_id(void)
/* returns the addreas ofthe PlmeList_id object */

/* containing a list of Plane-id objects. */
int num_vievs(vcid)

/* returns the number of projections viewed by the */
/* detector planes connected to the readout system */

Listing 6: Detactorld class messages

int numqlanes(void)
/* returns the number of Plane-id objects contained in the list */

PlaneAd +getplane(conat int index)
/' return8 the address of the (index + I) Plane-ld in the list */

Listing 7: Plane_List-id class messages

37

Readout(const int tape~etnumber)
/’ Constructor for the Readout class. The argument is the tape set
/* number for the tape containing the events to be processed */

Boolean init-okay(void)
* returns true if the object WUB properly constructed.

$ Otherwise, it returns false */
*/

ReadoutSame nme(void)
/’ identifies the wadout system */

Success update(const int tapenumber)
/* updatea mn dependent information required for decoding */

DecodeStatus decode_event(const int optionllags)
/* decodes raw hits into hita. The optioxflag is wed to control */
/” decoding options, like hit consolidation. */

UnpackStatus unpackment(Event &event)
/* unpacks raw hits f&m an event */

UnpackStatus unpack_event(Mc_Event &event)
/* unpacks raw hits from a Monte Carlo event */

DecodeStatus decodelltatus(void)
/’ returna a status code about the aucceea or failure of decoding */

UnpackStatus unpackstatus(void)
/* returns a status code about the .mcceds OT failure of uppacking */

int decodenum(void)

;* during decoding */
* returns a epM)T code indicating the mm! Errol encountered */

int unpacknm(void)

:* during unpacking */
* returns a ~TOT code indicating the ezoct errat‘ encountered ‘,I

Listing 8: Readout class messages

38

Event(const int tapenum)
/* Constructor for the Event claw. The argument is the tape set */
/* numbeer of the tape containing the eventa to be processed */

Boolean init.okay(void)
/* w+wns true if the object was properly constructed. */
/* Otherwise, it returns false */

Success getmwlt(Ras_Event &event)
/” retrieves event data from the mw event object */

EventStatus eventatats(void)
/* return the ervo~o~‘ status ‘/

int statusnm(void)
/' returns an integer code specifying the ezoct came of an e-7 */

int number(void)
/" returns the event number for the event */

int trignum(void)
/* returns the value of the trigger word from the event */

int tapenum(void)
/' returns the tape number fo? the tape fmm which the event was taken

int drivenum(void)
/' returna the tape drive that wrote the tape */

Listing 9: Event class messages

DataSource(const unsigned int buffersize)
/* Constrrrctor for the DataSource class. The argument ‘/
/* specifies the size of the input buffer to we. */

Boolean initakay(void)
* returns true if the object was properly constructed.

;* 0th
*/

erwise, it returns false */
Success getlaw-event(RauEvsnt &event)

;* Raw-Event object */
* retrieves an event from the data eowce and places it into the */

Success skipxecord(const int number)
/* skipa the nezt record in the data cowce */

Success resind(void)
/* goes to the first event in the dato source */

int ta.pe_set(void)
/* retrieves the tape set number from the tape header */

Boolean end_of_file(void)
/* returns true if the end of file has been reached */

Listing 10: DataSource class messages

39

DataServer(const char *datalile,
const unsigned int buffersize)

/' Constructor for the Data-Server clues. data_file contains the */
/* device name of the tape drive containing the tape to be mad */
/* buff er_size specifia the size of the input buffer to use */

Boolean initakay(void)
/’ &urns true if the object toas properly constructed. */
/* Othewise, it returns false */

Success initialize(void)
/* Initialize communicationa with the Data-Client object8 */

void start(void)
/’ Start the di8tribution of events */

Listing 11: DataServer class messaees

Mc_Event(const int tapenun)
/* Constructor for the KcJ?.vent class. The argument specifies */
/* the tape set number for the events in the Monte Carlo data file. */
/* The file that ia read is haTdwired into the FORTRAN code */
/’ vsed by the class to occe88 event data. The FORTRAN */

* routines we modified version8 of the routines
$ by the oficial FORTRAN analysis system.

*/
*/

Boolean init-okay(void)
/* returns true if the object wa8 properly constructed. ‘/
/* Otherwise, it return8 false */

Hc-FxentStatus getnext-evsnt(void)
/* retrieves the nezt event from the Monte Carlo data file “/

int nun-vertices(void)
/* return8 the number of interaction vertices in the event */

int mu-tracks(int vsrtsxnum)

/* returna the number of tracks otiginating from the vertez */
int numhits(int vertexnum. int tracknum)

/* returns the number of detector planes that detected the track */
/* specified by vertsxnum and tracknum */

double vrtr-coord(int vertexnum, int proj)

;* The coordinate is specified by proj */
* returns the coordinate of the verlez specified by vertexmm */

double trkmomentum(int vwtexxam, int tracknun. int praj)
/* returns the projection of the momentum of (I particle */
/* specified by vmtexnum and tracknum, along */
/* the azia apecijied by proj */

Success append(HcData *readout)
/* Add8 a l4cData object to the object. Used during initialization */

Listing 12: Mc_Event class messages

40

void append(Readaut *readout)
/* Appends a readout to the readout list */

Success makaXable(void)
/* Create the table that implements army-like accem to the readouts */

int numxeadouts(void)
/* returns the number of readouts contained in the Iist object */

Readout *getrsadout(const int readoutnum)
/" returns a pointer to the (readoutnun, + 1) readout ‘/

Listing 13: Readout_List class messages

Plan-id *get-plane(const int planenum)
/' returns a pointer to the (planenum + 1) PlaneAd object */

int numplanes(void)
/* returna the numbw of planea in the list */

Listing 14: GroupAd class messages

void clsarlist(void)
/* rerr~oved all the Group-ld objects from the list */

Groupld +group(const int groupnum)
/* returns a gointer to the (groupnum + I) Groupld object */

int num_groups(void)
/’ returna the number of groups in the list */

Listing 15: Group-IdList class messages

41

